
Cellular Network

Basic Goals of Networking

Wireless and Mobile Chae Y. Lee

Call management

- Call setup
- Call termination
- Different Service: voice over IP, call forwarding, ...

Wireless and Mobile Chae Y. Lee

Basic Goals of Networking

User Information Transport

Modulation

Duplexing

Multiple Access

Frequency Bands

Above factors define channels Physical channels Logical channels traffic channel vs. control channel

Networking Issues

Mobility Management

"How do you find users when calls arrive for them?" Registration to keep track of users (HLR/VLR) Paging to connect calls

Authentication and Encryption for Network Security

Need to have better security and privacy than wired line

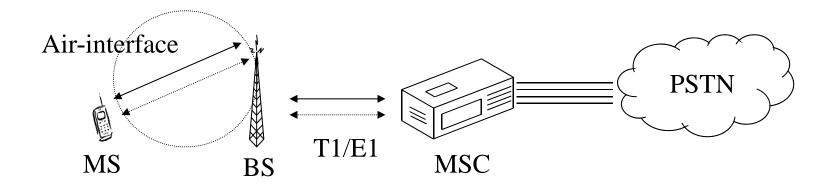
Radio Resource Management

Channel Reservation for handoff calls

Maintaining call quality: power control

Resource efficiency

Networking Issues


Wireless and Mobile Chae Y. Lee

Operation, Administrations and Maintenance (OAM) Traffic Monitoring Quality Monitoring

Network Elements

- Networking is system dependent
- AMPS is an example
 - It's not cellular system
 - It's an air-interface standard
 - i.e. Protocol between mobile unit and BS
 - Traffic channel: analog
 - Control channel: digital

Network Components

Air-Interface between Mobile and BS

Wireless and Mobile Chae Y. Lee

Traffic channel

Dedicated Control channel: call setup

Intra-call Control channel: Handoff calls, Power control

Wireless and Mobile Chae Y. Lee

xDMA/xDD Modulation: FM in AMPS Channel spacing: 30kHz in AMPS, 25 kHz by CEPT

Frequency Band

Dedicated Control channel

For call setup, frequency assignment, handoff Forward control channel (FOCC): paging channel Reverse control channel (RECC): Access channel

Every cell site has one dedicated control channel in each direction

Dedicated Control channel

Wireless and Mobile Chae Y. Lee

A digital channel with ECC

In AMPS, 10kbps/30kHz

Repeat every message 5 times: A form of time diversity Standard Block ECC

Forward (40, 28) code: 1.215 kbps after overhead

Reverse (48, 36) code: 1.250-1.442 kbps

Intra-call Control Channel (Voice channed V. Lee

In-band signaling over the voice channel to convey system control message

- 1) SAT (Supervisory Audio Tone)
- 2) ST (Signaling Tone)
- 3) Blank and Burst

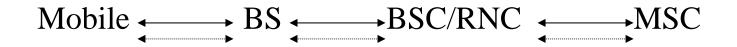
Base Station

Broadcasting signals

- Constantly monitors signal strength of on-going calls
- Locator receiver is used for handoff calls
- Radio link is a trunked system
- No trunking over the wired line from BS to MSC

MSC

Switching function


Administration/control function

- Database for billing
- Database for locations of users either in the system (HLR) or out of the system (VLR)
- Database for state of the system
 - cells, adjacent cells
 - available channels in every cell site
 - users signal that is degrading and requires handoff
- Authentication task for billing, verification of valid users

Trend

 Centralized core function to MSC Billing, Authentication
Distributed function to BSC/RNC

Handoff, call control, channel assignment

AMPS

AMPS consists of

1) Cellular idea

2) Spectrum allocation

3) Air-Interface standard

Spectrum Allocation

824-849 MHz: Mobile tx

869-894 MHz: Mobile rx

50MHz/30kHz = 1664 ch

- $\div 2 = 832$ Duplex ch
- $\div 2 = 416$ Duplex ch/ carrier

21 control, 395 traffic

AMPS

Air-interface standard

AMPS developed by AT&T

AMPS adopted by EIA and TIA: EIA/TIA 553 Standard

EIA/TIA 533 standard

Modulation scheme

Voice filtering

Power control

Call setup/termination, Handoff protocol

Structure of message

Digital in Wireless

1st Generation Cellular: AMPS (Analog) 2nd Generation Cellular: (Digital) GSM: One Pan-European Standard Increase Capacity over Analog USDC (IS-54): Increase Capacity over AMPS CDMA (IS-95): Increase Capacity over AMPS 3rd Generation Cellular: UMTS/IMT-2000 (Digital) WCDMA: voice, video telephony, web document, VOD **CDMA2000**

Digital in Wireless

Wireless and Mobile Chae Y. Lee

All 2nd Generation Digital standards introduce

ECC

Interleaving

Equalization (not in CDMA)

Low rate vocoding (LPC, ...)

Encryption

Embedded data channel

MAHO

Group System Mobile, Global System Mobile Goal

- 1. Pan-European standard (full international roaming)
- 2. To provide many different services

voice, data service, pager

- 3. Security
- 4. Increased capacity:

GSM

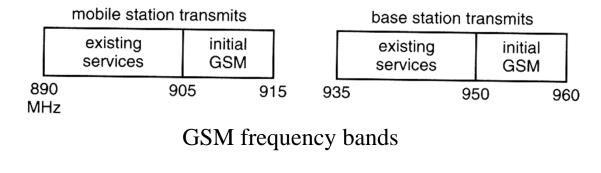
GSM is a comprehensive standard Air-interface standard: Mobile-BS Interface between BS and MSC BS system (to serve micro-cells) BTS: radio equipment BSC: network control operation and signal processing

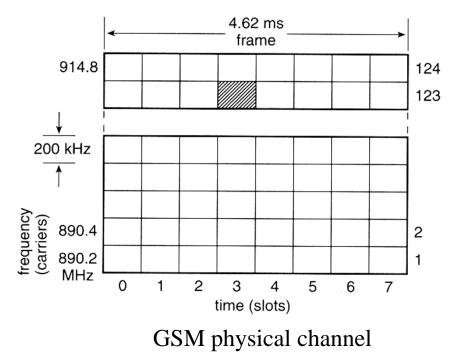
Radio Tx in GSM

Wireless and Mobile Chae Y. Lee

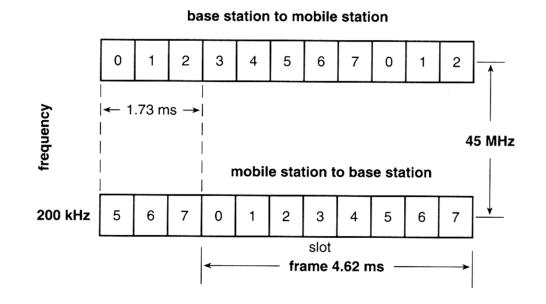
Two 25 MHz Band

890-915: uplink 935-960: down link

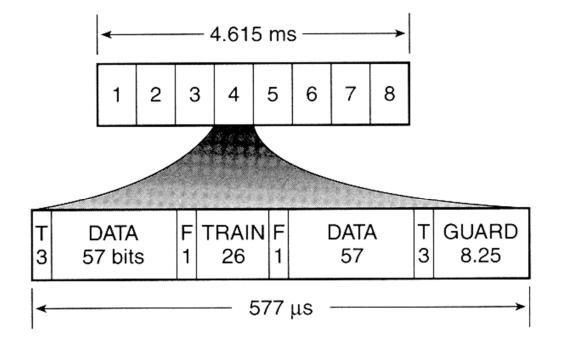

TDMA/FDD


200kHz radio carrier

1 frame (26frame/120ms) with 8 time slots


Reverse frame is 3 TS retarded relative to the forward frame: unnecessary for a terminal to tx and rx simultaneously

GSM frequency bands and physical channel



GSM frames and slots

Contents of a GSM time slot

T: TAIL bits F: FLAG TRAIN: equalizer TRAINING sequence

Logical Channels

Wireless and Mobile Chae Y. Lee

Traffic channel:

TCH/F: 22.8 kbps TCH/H: 11.4 kbps Control channel (signaling channel): Broadcast channel:

Common control channel:

Dedicated control channel:

MAHO

Mobile	Deee	Lawiaal	nd I
Station	Base Station	Logical Channel	
conversation	`	тсн	
conversation		тсн	
MERSUREMENT REPOR	T	SACCH	
conversation		TCH	
conversation		тсн	
conversation		тсн	
MERSUREMENT REPOR	T		
conversation		SACCH	
HRNDOVER COMMAND		TCH	
HANDOVER ACCESS		FACCH	
HRNDDVER ACCESS		new TCH	
HANDOVER ACCESS		TCH	
HANDOVER RCCESS		TCH	
PHYSICAL INFORMATION	N	TCH	
HANDOVER COMPLETE		FACOLI	
conversation		FACCH	
conversation		TCH	
MERSUREMENT REPORT	T	TCH	
conversation		SACCH	
conversation		TCH	
conversation		TCH	
MERSUREMENT REPORT	>	TCH	
conversation		SACCH TCH	

Figure 7.27 Mobile-assisted handover.